Introduction

Randomized Algorithms: Week 1
Summer HSSP 2023
Emily Liu

About this class

- Survey class of randomized algorithms
- Each week is a different algorithm
- Alternative view of programming/algorithms
- Prerequisites:
- Some programming experience
- Level: AP Computer Science, USACQO Bronze, or equivalent
- Comfortable with probability concepts
- WEe’'ll do some review!

About me

- Emily Liu
- From California (Bay Areal)
- Undergrad at MIT (co2024), doubling Computer Science + Math

- Currently: software internship, machine learning research

About YO U

- Grade
- Where are you dialing in from?
- First time at HSSP?

- Preferred programming language OR best thing you ate this week

What is a randomized algorithm?

Deterministic Algorithms

Input i>

Algorithm

Output

Randomized Algorithms

Input :> Algorithm :> Output

I

Source of
Randomness

Question: Why randomization?

1. Deterministic algorithms can be too slow

2. Randomized algorithms are good enough

Two classes of randomized algorithms:

Monte Carlo Las Vegas

Guaranteed runtime, Probabilistic runtime,
Probabilistic correctness Guaranteed correctness

Monte Carlo Algorithms

- Will always run in polynomial time
i.e: O(n”k) where k is a constant

- The probability of being wrong is upper-bounded by some small value €

- Biases:
- False-biased: Always correct when returning false, sometimes correct
when returning true
- True-biased: Always correct when returning true, sometimes correct
when returning false
- Unbiased: Symmetric probability of success for true or false return

Las Vegas Algorithms

- Always returns the correct output

- The algorithm itself may run for longer or shorter depending on
(1) The input
(2) The random numbers

- We look at the expected value of the runtime.

- Formally, this should still be polynomial time.

Some silly examples

Task: Given an array A of length N and a target value k, determine if the value k
exists in A.

contains (A, k) :
1 = randInt (0 .. N-1)

return (A[i1] == k)
Questions:

- Is this a Las Vegas or Monte Carlo algorithm?
- Is this a false-biased, true-biased, or unbiased algorithm? Why?
- How can we be more confident in our answer, without writing any new code?

Some more silly examples
Task: Given an array A of length N with exactly one value equal to a target value Kk,
return the index i such that A[i] = k.
find index (A, k):
1 = randInt (0 .. N-1)
return 1 if (A[i1i] == k) else find index (A, k)
Questions:

- Is this a Las Vegas or Monte Carlo algorithm?
- Is this algorithm guaranteed to terminate?
- How many times in expectation will the algorithm repeat?

Mathematical building blocks

Random variables, probability distributions

Random variable: variable that can take on multiple values, determined by a
random function

Are described through probability mass functions (discrete) or probability
density functions (continuous)

Examples

- Outcome of a coin toss or dice roll
- Output of Monte Carlo Algorithms
- Runtime of Las Vegas Algorithms

Uniform random variables

Discrete uniform distribution

X takes on n possible values, all with equal likelihood (1/n).

contains (A, k) :

1 =

randInt (0O ..

return (A[1]

randInt is a discrete uniform
random variable that takes on
values from 0 through N-1.

Geometric random variables
Models a process where you repeat something independently, and terminate at
each step with a probability p.

Example: Toss a fair coin until it lands on heads.

find index (A, Kk):
1 = randInt (0 .. N-1)
return 1 1f (A[i1i] == k) else find index (A, k)

The number of times find_index has to run is a geometric random
variable. What is p?

Expected value

Given a random variable X,

E[X] = sum(p(x) * x) over all values x that X can take on.
Linearity of expectation: E[aX + bY] = a E[X] + b E[Y]
Exercises:

1. Calculate expected value of a uniform random variable that takes on
values from 1 to N, where N is a positive integer.

2. Calculate expected value of a geometric random variable with a
probability parameter p.

Revisiting contains

If A does not contain k, algorithm is ~ contains (A, k):
always correct. 1 = randInt (0 .. N-1)

Assume A contains one copy of k. return (A[i] == k)
We run the function t times.

P(incorrect | A contains k) = (1 - 1/n)*

Probability of failure gets smaller as t increases - but how much?

Revisiting contains

Recall: deterministic algorithm takes n computations
Let t = n: the probability of getting wrong is (1-1/n)*n
-> e as n goes to infinity
approx. 0.3, not very good...
Reason: Probability of success (1/n) is very low.
Suppose there were ¢ occurrences of k in A; probability of failure goes to e™

- Increases as c increases, which makes sense!

Preview of course

Week 2: Randomized Quicksort

Task: Given a list of comparable values,
sort them in ascending order.

Many sorting algorithms already exist

- Selection sort (O(n"2))
- Insertion sort (O(n"2))
Merge sort (O(n log n))

Quick sort - O(n log n) algorithm with
some randomness

Week 3: Matrix Multiplication

Task: Given three matrices A, B, and
C, determine whether or not AB = C.

Traditional matrix multiplication:
O(n”"3).

Random: Frievalds’ algorithm:

O(n"2).

Week 4: Game Tree Evaluation

Game tree = rooted tree where every
internal node is a MIN or MAX
operator

MIN: even distance from root
MAX: odd distance from root

Leaves are numerical values, and at
each internal node we apply the
operation to all incoming values.

Goal: determine the value at the root.

Week 5: Primality Testing
Task: Given a positive integer N,
determine whether or not N is prime.

Brute force: O(sqrt(N)) - test every
number up to round(sqrt(N)).

Improvement: Memoize prime numbers,
test only the primes up to round(sqrt(N))

Randomization can get us faster
algorithms!

X [2][3] X [s] X [7] X
11><13><><><17><19><
2 (3] 24 8 O[] x(
1] 0 (e [37] i 3
]] (e 5 o] e 3
S [] 3 [9] 3
ot | e o € [7] 3 3
] D [73] 2 K A [0] 3
P[] 3 3 3 33 [90] 2
P 8 8 K [o7] 2 g
1] Resat| n o0}

Week 6: Boolean Satisfiability

Task: Given a boolean expression,
determine whether or not there exists

an assignment of the variables that (x ORy OR z) AND (x ORy OR z) AND
makes the expression True

(x ORy OR z) AND (x OR y OR z) AND

Brute force solution: Given n variables, (X ORy OR z) AND (x ORY OR 2)
O(2"n).

- Exponential runtime :(
- NP complete: don’t really have a
better (deterministic) solution

Solution: randomization!

