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About this class

- Survey class of randomized algorithms
- Each week is a different algorithm

- Alternative view of programming/algorithms
- Prerequisites:

- Some programming experience
- Level: AP Computer Science, USACO Bronze, or equivalent

- Comfortable with probability concepts
- We’ll do some review!



About me

- Emily Liu

- From California (Bay Area!)

- Undergrad at MIT (co2024), doubling Computer Science + Math

- Currently: software internship, machine learning research



About YOU
- Grade

- Where are you dialing in from?

- First time at HSSP?

- Preferred programming language OR best thing you ate this week



What is a randomized algorithm?



Deterministic Algorithms

Input Algorithm Output



Randomized Algorithms

Input Algorithm Output

Source of 
Randomness



Question: Why randomization?

1. Deterministic algorithms can be too slow

2. Randomized algorithms are good enough



Two classes of randomized algorithms:

Monte Carlo Las Vegas

Guaranteed runtime, 
Probabilistic correctness

Probabilistic runtime, 
Guaranteed correctness



Monte Carlo Algorithms

- Will always run in polynomial time

i.e: O(n^k) where k is a constant

- The probability of being wrong is upper-bounded by some small value ε

- Biases:
- False-biased: Always correct when returning false, sometimes correct 

when returning true
- True-biased: Always correct when returning true, sometimes correct 

when returning false
- Unbiased: Symmetric probability of success for true or false return



Las Vegas Algorithms

- Always returns the correct output

- The algorithm itself may run for longer or shorter depending on

(1) The input

(2) The random numbers

- We look at the expected value of the runtime.

- Formally, this should still be polynomial time.



Some silly examples

Task: Given an array A of length N and a target value k, determine if the value k 
exists in A.

contains(A, k):

    i = randInt(0 … N-1)

    return (A[i] == k)

Questions:

- Is this a Las Vegas or Monte Carlo algorithm?
- Is this a false-biased, true-biased, or unbiased algorithm? Why?
- How can we be more confident in our answer, without writing any new code?



Some more silly examples

Task: Given an array A of length N with exactly one value equal to a target value k, 
return the index i such that A[i] = k.

find_index(A, k):

    i = randInt(0 … N-1)

    return i if (A[i] == k) else find_index(A, k)

Questions:

- Is this a Las Vegas or Monte Carlo algorithm?
- Is this algorithm guaranteed to terminate?
- How many times in expectation will the algorithm repeat?



Mathematical building blocks



Random variables, probability distributions

Random variable: variable that can take on multiple values, determined by a 
random function

Are described through probability mass functions (discrete) or probability 
density functions (continuous)

Examples

- Outcome of a coin toss or dice roll
- Output of Monte Carlo Algorithms
- Runtime of Las Vegas Algorithms



Uniform random variables

Discrete uniform distribution

X takes on n possible values, all with equal likelihood (1/n).

contains(A, k):

    i = randInt(0 … N-1)

    return (A[i] == k)

randInt is a discrete uniform 
random variable that takes on 
values from 0 through N-1.



Geometric random variables

Models a process where you repeat something independently, and terminate at 
each step with a probability p.

Example: Toss a fair coin until it lands on heads.

find_index(A, k):

    i = randInt(0 … N-1)

    return i if (A[i] == k) else find_index(A, k)

The number of times find_index has to run is a geometric random 
variable. What is p?



Expected value

Given a random variable X,

E[X] = sum(p(x) * x) over all values x that X can take on.

Linearity of expectation: E[aX + bY] = a E[X] + b E[Y]

Exercises:

1. Calculate expected value of a uniform random variable that takes on 
values from 1 to N, where N is a positive integer.

2. Calculate expected value of a geometric random variable with a 
probability parameter p.



Revisiting contains

If A does not contain k, algorithm is 
always correct.

Assume A contains one copy of k. 
We run the function t times.

contains(A, k):

    i = randInt(0 … N-1)

    return (A[i] == k)

P(incorrect | A contains k) = (1 - 1/n)^t

Probability of failure gets smaller as t increases - but how much?



Revisiting contains

Recall: deterministic algorithm takes n computations

Let t = n: the probability of getting wrong is (1-1/n)^n

-> e-1 as n goes to infinity

approx. 0.3, not very good…

Reason: Probability of success (1/n) is very low.

Suppose there were c occurrences of k in A; probability of failure goes to e-c

- Increases as c increases, which makes sense!



Preview of course



Week 2: Randomized Quicksort

Task: Given a list of comparable values, 
sort them in ascending order.

Many sorting algorithms already exist

- Selection sort (O(n^2))
- Insertion sort (O(n^2))
- Merge sort (O(n log n))

Quick sort - O(n log n) algorithm with 
some randomness



Week 3: Matrix Multiplication

Task: Given three matrices A, B, and 
C, determine whether or not AB = C.

Traditional matrix multiplication: 
O(n^3).

Random: Frievalds’ algorithm:

O(n^2).



Week 4: Game Tree Evaluation

Game tree = rooted tree where every 
internal node is a MIN or MAX 
operator

MIN: even distance from root

MAX: odd distance from root

Leaves are numerical values, and at 
each internal node we apply the 
operation to all incoming values.

Goal: determine the value at the root.



Week 5: Primality Testing

Task: Given a positive integer N, 
determine whether or not N is prime.

Brute force: O(sqrt(N)) - test every 
number up to round(sqrt(N)).

Improvement: Memoize prime numbers, 
test only the primes up to round(sqrt(N))

Randomization can get us faster 
algorithms!



Week 6: Boolean Satisfiability

Task: Given a boolean expression, 
determine whether or not there exists 
an assignment of the variables that 
makes the expression True

Brute force solution: Given n variables, 
O(2^n).

- Exponential runtime :(
- NP complete: don’t really have a 

better (deterministic) solution

Solution: randomization!


